Hide Table of Contents

Create Linear Dynamic Study Example (C#)

This example shows how to create a linear harmonic dynamic study.

NOTE: To get persistent reference identifiers (PIDs) for model selections, you can use pidcollector.exe or IModelDocExtension::GetPersistReference3.

//---------------------------------------------------------------------------
// Preconditions:
// 1. Add the SOLIDWORKS Simulation as an add-in (in SOLIDWORKS, click 
//    Tools > Add-ins > SOLIDWORKS Simulation > OK).

// 2. Add the SOLIDWORKS Simulation primary interop assembly as a reference
//    (in the IDE, click Project > Add Reference > .NET > 
//    SolidWorks.Interop.cosworks > OK).

// 3. Ensure that the specified file to open exists.
// 4. Ensure that the c:\temp folder exists.
//
// Postconditions:
// 1. Opens the specified file.
// 2. Creates a linear harmonic dynamic study.
// 3. Runs an analysis. 
// 4. Prints the study options and results to the Immediate window.
// 5. Saves the solution step, displacement, velocity,
//    and stress result files to c:\temp.
// 6. Right-click the Stress1 or Displacement1 plot in the Results folder

//    and click Show to plot the results in color in the graphics area.
//
// NOTE: Because the model is used elsewhere, do not save any changes.
//---------------------------------------------------------------------------
 

using Microsoft.VisualBasic;
using System;
using System.Collections;
using System.Collections.Generic;
using System.Data;
using System.Diagnostics;
using SolidWorks.Interop.swconst;
using SolidWorks.Interop.sldworks;
using SolidWorks.Interop.cosworks;
using System.Runtime.InteropServices;
namespace CreateDynHarmStudy_CSharp.csproj
{
    partial class SolidWorksMacro
    {
        public void Main()
        {
            ModelDoc2 Part = default(ModelDoc2);
            CosmosWorks COSMOSWORKS = default(CosmosWorks);
            CwAddincallback CWAddinCallBack = default(CwAddincallback);
            CWModelDoc ActDoc = default(CWModelDoc);
            CWStudyManager StudyMngr = default(CWStudyManager);
            CWStudy Study = default(CWStudy);
            CWShellManager ShellMgr = default(CWShellManager);
            CWMaterial ShellMat = default(CWMaterial);
            CWLoadsAndRestraintsManager LBCMgr = default(CWLoadsAndRestraintsManager);
            CWBaseExcitation CWBaseExcitationU = default(CWBaseExcitation);
            CWDistributedMass CWDistribMass = default(CWDistributedMass);
            object CWBaseExcitationEntity = null;
            object CWDirectionEntity = null;
            int longstatus = 0;
            int longwarnings = 0;
            int errCode = 0;
            bool boolstatus = false;
            int nStep = 0;
            object pDisp5 = null;
            object[] DispArray1 = new object[1];
            object[] DispArray3 = new object[1];
            object[] Disp = null;
            object[] Stress = null;
            object[] Velocity = null;
            object[] Acceleration = null;
            string sStudyName = null;
            CWStudyResultOptions ResultOptions = default(CWStudyResultOptions);
            CWDampingOptions DampingOptions = default(CWDampingOptions);
            object[] DampingRatios = new object[9];
            int i = 0;
 
            //Tolerances and baselines
            const double MeshEleSize = 26.5868077635828;
            const double MeshTol = 1.32934038817914;
            
 
            //Open document
            Part = swApp.OpenDoc6("C:\\Users\\Public\\Documents\\SOLIDWORKS\\SOLIDWORKS 2018\\samples\\tutorial\\api\\lineardynamic.SLDPRT", (int)swDocumentTypes_e.swDocPART, (int) swOpenDocOptions_e.swOpenDocOptions_Silent, ""ref longstatus, ref longwarnings);
            if (Part == null)
                ErrorMsg(swApp, "Failed to open lineardynamic.SLDPRT");
 
            //Add-in callback
            CWAddinCallBack = (CwAddincallback)swApp.GetAddInObject("CosmosWorks.CosmosWorks");
            if (CWAddinCallBack == null)
                ErrorMsg(swApp, "Failed to get CwAddincallback object");
            COSMOSWORKS = CWAddinCallBack.CosmosWorks;
            if (COSMOSWORKS == null)
                ErrorMsg(swApp, "Failed to get CosmosWorks object");
 
            //Get active document
            ActDoc = COSMOSWORKS.ActiveDoc;
            if (ActDoc == null)
                ErrorMsg(swApp, "Failed to get active document");
 
            //Create a dynamic harmonic study
            StudyMngr = ActDoc.StudyManager;
            if (StudyMngr == null)
                ErrorMsg(swApp, "Failed to get study manager object");
 
            sStudyName = "Dynamic_Harmonic";
            Study = StudyMngr.CreateNewStudy3(sStudyName, (int)swsAnalysisStudyType_e.swsAnalysisStudyTypeDynamic, (int)swsDynamicAnalysisSubType_e.swsDynamicAnalysisSubTypeHarmonic, out errCode);
 
            Debug.Print("Linear dynamic study with harmonic analysis");
            Debug.Print("");
            Debug.Print("Study configuration name is " + Study.ConfigurationName);
            Debug.Print("Dynamic analysis subtype as defined in swsAnalysisStudyType_e is " + Study.DynamicAnalysisSubType);
            Debug.Print("Dynamic study options...");
 
            CWDynamicStudyOptions DynStudyOptions = default(CWDynamicStudyOptions);
            DynStudyOptions = Study.DynamicStudyOptions;
            int freqOption = 0;
            double freqValue = 0;
            bool bChecked = false;
            errCode = DynStudyOptions.GetFrequencyOption2(out freqOption, out freqValue);
            Debug.Print("  Frequency option (0=number of frequencies, 1=upper bound): " + freqOption);
            Debug.Print("  No. of frequencies or upper-bound frequency: " + freqValue);
            errCode = DynStudyOptions.GetFrequencyShiftOption2(out bChecked, out freqValue);
            Debug.Print("  Is frequency shift enabled (0=no, 1=yes)? " + bChecked);
            Debug.Print("  Frequency shift: " + freqValue);
            errCode = DynStudyOptions.SetIncompatibleBondingOption2(0); // automatic
            errCode = DynStudyOptions.SetUseSoftSpring2(0); // do not use soft springs to stabilize model
            errCode = DynStudyOptions.SetResultFolderPath2("c:\\temp");
            DynStudyOptions.SolverType = 2; // FFEPlus
            
            double harmbandwidth = 0;
            errCode = DynStudyOptions.GetHarmonicBandwidth2(out harmbandwidth);
            Debug.Print("  Harmonic bandwidth: " + harmbandwidth);
            double freqLowerLimit = 0;
            errCode = DynStudyOptions.GetHarmonicFrequencyLowerLimit2(out freqLowerLimit);
            Debug.Print("  Harmonic frequency lower limit: " + freqLowerLimit);
            double freqUpperLimit = 0;
            errCode = DynStudyOptions.GetHarmonicFrequencyUpperLimit2(out freqUpperLimit);
            Debug.Print("  Harmonic frequency upper limit: " + freqUpperLimit);
            int freqUnits = 0;
            errCode = DynStudyOptions.GetHarmonicFrequencyUnits2(out freqUnits);
            Debug.Print("  Harmonic frequency units (0=rad/sec, 1=Hz): " + freqUnits);
            int interpolation = 0;
            errCode = DynStudyOptions.GetHarmonicInterpolation2(out interpolation);
            Debug.Print("  Harmonic interpolation (0=logarithmic, 1=linear): " + interpolation);
            int points = 0;
            errCode = DynStudyOptions.GetHarmonicNoOfPoints2(out points);
            Debug.Print("  Harmonic number of points for each frequency: " + points);
            Debug.Print("");
 
            //Set study result options
            Debug.Print("Study result options...");
            ResultOptions = Study.StudyResultOptions;
            ResultOptions.SaveResultsForSolutionStepsOption = 1; // save solution step results
            ResultOptions.SaveDisplacementsAndVelocitiesOption = 1; // save displacements and velocities
            boolstatus = ResultOptions.SetSaveStressAndReactionsOptions(1, 0); // save stresses and reactions for all stress components
            
            //Solution step set #1
            errCode = ResultOptions.SetSolutionStepsSetInformation(1, 10, 100, 3);
            Debug.Print("  Set solution steps set #1 (10-100, inc=3)? (0=success): " + errCode);
            //Solution step set #3
            errCode = ResultOptions.SetSolutionStepsSetInformation(3, 100, 1000, 5);
            Debug.Print("  Set solution steps set #3 (100-1000, inc=5)? (0=success): " + errCode);
            Debug.Print("");
 
            //Set damping options
            DampingOptions = Study.DampingOptions;
            DampingOptions.DampingType = 0; //modal damping

            DampingOptions.ComputeFromMaterialDamping = 0; // do not use material damping ratios
            DampingOptions.ClearAllDampingRatios();
            DampingRatios[0] = 1;
            DampingRatios[1] = 5;
            DampingRatios[2] = 3.45;
            DampingRatios[3] = 6;
            DampingRatios[4] = 15;
            DampingRatios[5] = 15;
            DampingRatios[6] = 16;
            DampingRatios[7] = 25;
            DampingRatios[8] = 34.5;
            errCode = DampingOptions.SetDampingRatios(3, (DampingRatios));
            
            object PID = null;
            object SelObj = null;
            object obj = null;
 
            //Get face by persistent ID
            boolstatus = Part.Extension.SelectByID2("""FACE", 0.367377178180561, 0.0153999999998859, -0.443699715030164, false, 0, null, 0);
            obj = ((SelectionMgr)(Part.SelectionManager)).GetSelectedObject6(1, -1);
            PID = Part.Extension.GetPersistReference3(obj);
            SelObj = Part.Extension.GetObjectByPersistReference3((PID), out errCode);
            DispArray1[0] = SelObj; //Face
            
 
            //Get edge by persistent ID
            boolstatus = Part.Extension.SelectByID2("""EDGE", 0.473843326221299, 0.0160904480509885, -0.000690335842989498, false, 0, null, 0);
            obj = ((SelectionMgr)(Part.SelectionManager)).GetSelectedObject6(1, -1);
            PID = Part.Extension.GetPersistReference3(obj);
            CWBaseExcitationEntity = Part.Extension.GetObjectByPersistReference3((PID), out errCode);
            DispArray3[0] = CWBaseExcitationEntity; //Edge
            
 
            //Get Axis1 reference geometry by persistent ID
            boolstatus = Part.Extension.SelectByID2("Axis1""AXIS", -0.0320045390890095, 0.0639408825367532, -0.0319259521004658, false, 0, null, 0);
            obj = ((SelectionMgr)(Part.SelectionManager)).GetSelectedObject6(1, -1);
            PID = Part.Extension.GetPersistReference3(obj);
            CWDirectionEntity = Part.Extension.GetObjectByPersistReference3((PID), out errCode);
            pDisp5 = CWDirectionEntity;
 
            //Add materials
            ShellMgr = Study.ShellManager;
            if (ShellMgr == null)
                ErrorMsg(swApp, "Failed to get shell manager object");
 
            CWShell CWFeatObj1 = default(CWShell);
            CWFeatObj1 = ShellMgr.GetShellAt(0, out errCode);
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to get shell component");
            ShellMat = CWFeatObj1.GetDefaultMaterial();
            ShellMat.MaterialUnits = 0;
            ShellMat.SetPropertyByName("EX", 2000000000000.0, 0);
            ShellMat.SetPropertyByName("NUXY", 0.25, 0);
            errCode = CWFeatObj1.SetShellMaterial(ShellMat);
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to apply material");
 
            CWFeatObj1.ShellBeginEdit();
            CWFeatObj1.Formulation = 1; // thick shell
            CWFeatObj1.ShellUnit = 1; // centimeters
            CWFeatObj1.ShellThickness = 5; // 5 cm
            CWFeatObj1.ShellOffsetOption = 3; // specify reference surface
            CWFeatObj1.ShellOffsetValue = 0.3;
            errCode = CWFeatObj1.ShellEndEdit();
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to create shell");
            CWFeatObj1 = null;
 
            //Get loads and restraints manager
            LBCMgr = Study.LoadsAndRestraintsManager;
            if (LBCMgr == null)
                ErrorMsg(swApp, "Failed to get loads and restraints manager");
 
            //Create normal pressure
            CWPressure CWFeatObj2 = default(CWPressure);
            CWFeatObj2 = LBCMgr.AddPressure((int)swsPressureType_e.swsPressureTypeNormal, (DispArray1), nullout errCode);
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to create normal pressure");
            CWFeatObj2.PressureBeginEdit();
            Debug.Print("Normal pressure values...");
            Debug.Print("  Pressure unit in swsStrengthUnit_e units: " + CWFeatObj2.Unit);
            Debug.Print("  Pressure value: " + CWFeatObj2.Value);
            Debug.Print("  Pressure phase angle (-1 if not set): " + CWFeatObj2.PhaseAngle);
            Debug.Print("  Pressure phase angle unit in swsPhaseAngleUnit_e units: " + CWFeatObj2.PhaseAngleUnit);
            errCode = CWFeatObj2.PressureEndEdit();
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to apply normal pressure value");
            CWFeatObj2 = null;
            Debug.Print(" ");
 
            //Add a restraint
            CWRestraint CWFeatObj3 = default(CWRestraint);
            CWFeatObj3 = LBCMgr.AddRestraint(0, (DispArray3), pDisp5, out errCode);
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to create restraint");
            CWFeatObj3.RestraintBeginEdit();
            CWFeatObj3.SetTranslationComponentsValues(0, 0, 1, 0.0, 0.0, 0.0);
            CWFeatObj3.SetRotationComponentsValues(0, 0, 0, 0.0, 0.0, 0.0);
            CWFeatObj3.Unit = 2;
            errCode = CWFeatObj3.RestraintEndEdit();
            if (errCode != 0)
                ErrorMsg(swApp, "Restraint end-edit failed");
            

            //Add uniform base excitation
            CWBaseExcitationU = LBCMgr.AddUniformBaseExcitation((int)swsBaseExcitationType_e.swsBaseExcitationType_Acceleration, CWBaseExcitationEntity, (int)swsAccelerationUnit_e.swsAccelerationUnit_InchesPerSquareSec, 1, 2.3, 1, 3.4, 1, 4.5, out errCode);
            if (errCode != 0)
                ErrorMsg(swApp, "Adding uniform base excitation failed");
            Debug.Print("Uniform base excitation type (0=Disp, 1=Vel, 2=Acc): " + CWBaseExcitationU.BaseExcitationType);
            int bdir1 = 0;
            int bdir2 = 0;
            int bdir3 = 0;
            int bang = 0;
            CWBaseExcitationU.GetExcitationDirections(out bdir1, out bdir2, out bdir3);
            Debug.Print(" Excitation in...");
            Debug.Print("   Direction 1 (1=true)? " + bdir1);
            Debug.Print("   Direction 2 (1=true)? " + bdir2);
            Debug.Print("   Direction 3 (1=true)? " + bdir3);
            double dval1 = 0;
            double dval2 = 0;
            double dval3 = 0;
            CWBaseExcitationU.GetExcitationDirectionValues(out dval1, out dval2, out dval3);
            CWBaseExcitationU.GetExcitationReverseDirections(out bdir1, out bdir2, out bdir3, out bang);
            Debug.Print(" Excitation values...");
            Debug.Print(" Units as defined in swsAccelerationUnit_e: " + CWBaseExcitationU.Unit);
            Debug.Print("   Direction 1: " + dval1);
            Debug.Print("     Reversed? (1=true) " + bdir1);
            Debug.Print("   Direction 2: " + dval2);
            Debug.Print("     Reversed? (1=true) " + bdir2);
            Debug.Print("   Direction 3: " + dval3);
            Debug.Print("     Reversed? (1=true) " + bdir3);
            Debug.Print("   Phase angle (-1 if not set): " + CWBaseExcitationU.PhaseAngle);
            Debug.Print("     Reversed? (1=true) " + bang);
            Debug.Print("     Units as defined in swsPhaseAngleUnit_e: " + CWBaseExcitationU.PhaseAngleUnit);
            object[] curveData = null;
            curveData = (object[])CWBaseExcitationU.GetTimeOrFrequencyCurve();
            //variation with frequency data
            Debug.Print(" Acceleration excitation variation with frequency data");
            Debug.Print(" (number of points, x1, y1, x2, y2...xn, yn):");
            for (i = 0; i <= curveData.GetUpperBound(0); i++)
            {
                Debug.Print("  * " + curveData[i]);
            }
            Debug.Print("");
 
            //Add distributed mass
            CWDistribMass = LBCMgr.AddDistributedMass((DispArray1), 0, 1, ref errCode);
            Debug.Print("Total distributed mass: " + CWDistribMass.TotalMass);
            Debug.Print("  Units in swsUnitSystem_e units: " + CWDistribMass.Units);
            Debug.Print("");
 
            //Create mesh
            CWMesh CWFeatObj4 = default(CWMesh);
            CWFeatObj4 = Study.Mesh;
            if (CWFeatObj4 == null)
                ErrorMsg(swApp, "Failed to create mesh object");
            CWFeatObj4.MesherType = 0;
            CWFeatObj4.Quality = 1;
 
            errCode = Study.CreateMesh(0, MeshEleSize, MeshTol);
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to create mesh");
            Debug.Print("Worst Jacobian ratio for the mesh: " + CWFeatObj4.GetWorstJacobianRatio());
            Debug.Print("");
 
            //Run analysis
            Debug.Print("Running the analysis");
            Debug.Print("");
            errCode = Study.RunAnalysis();
            if (errCode != 0)
                ErrorMsg(swApp, "Analysis failed with error code as defined in swsRunAnalysisError_e:" + errCode);
 
            //Get results
            CWResults CWFeatObj5 = default(CWResults);
            CWFeatObj5 = Study.Results;
            if (CWFeatObj5 == null)
                ErrorMsg(swApp, "Failed to get Results object");
 
            Debug.Print("Study results...");
            nStep = CWFeatObj5.GetMaximumAvailableSteps();
            Debug.Print("  Maximum available steps: " + nStep);
 
            //Get algebraic minimum/maximum resultant displacements
            Disp = (object[])CWFeatObj5.GetMinMaxDisplacement(3, nStep, null, 0, out errCode);
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to get displacement results");
            Debug.Print("  Min/Max URES Resultant Displacements (Node, Min, Node, Max):");
            for (i = 0; i <= Disp.GetUpperBound(0); i++)
            {
                Debug.Print("  * " + Disp[i]);
            }
            Debug.Print("");
 
            //Get algebraic minimum/maximum von Mises stresses
            Stress = (object[])CWFeatObj5.GetMinMaxStress(9, 0, nStep, null, 3, out errCode);
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to get stress results");
            Debug.Print("  Algebraic Min/Max von Mises Stresses (Node, Min, Node, Max):");
            for (i = 0; i <= Stress.GetUpperBound(0); i++)
            {
                Debug.Print("  * " + Stress[i]);
            }
            Debug.Print("");
 
            //Get algebraic minimum/maximum velocities
            Velocity = (object[])CWFeatObj5.GetMinMaxVelocity(0, nStep, CWDirectionEntity, 0, out errCode);
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to get velocity results");
            Debug.Print("  Algebraic Min/Max Velocities (Node, Min, Node, Max):");
            for (i = 0; i <= Velocity.GetUpperBound(0); i++)
            {
                Debug.Print("  * " + Velocity[i]);
            }
            Debug.Print("");
 
            //Get algebraic minimum/maximum accelerations
            Acceleration = (object[])CWFeatObj5.GetMinMaxAcceleration(0, nStep, CWDirectionEntity, 0, out errCode);
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to get acceleration results");
            Debug.Print("  Algebraic Min/Max Accelerations (Node, Min, Node, Max):");
            for (i = 0; i <= Acceleration.GetUpperBound(0); i++)
            {
                Debug.Print("  * " + Acceleration[i]);
            }
 

            Debug.Print("");
 
            object[] forces2 = null;
            object selectedAndModelReactionFM = null;
            object selectedOnlyReactionFM = null;
            // Reaction forces and moments for entire model and selected face at solution step 59
            forces2 = (object[])CWFeatObj5.GetReactionForcesAndMomentsWithSelections(59, null, (int)swsForceUnit_e.swsForceUnitNOrNm, (DispArray1), out selectedAndModelReactionFM, out selectedOnlyReactionFM, out errCode);
            object[] selFM = (object[])selectedOnlyReactionFM;
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to get reaction forces and moments");
            Debug.Print("  Reaction forces (N) and moments (N-m) for selected face ");
            Debug.Print("  {xcoord_force, ycoord_force, zcoord_force, resultant_force, ");
            Debug.Print("   xcoord_moment, ycoord_moment, zcoord_moment, resultant_moment}:");
            for (i = 0; i <= selFM.GetUpperBound(0); i++)
            {
                Debug.Print("  * " + selFM[i]);
            }
 
        }
 
        public void ErrorMsg(SldWorks SwApp, string Message)
        {
            SwApp.SendMsgToUser2(Message, 0, 0);
            SwApp.RecordLine("'*** WARNING - General");
            SwApp.RecordLine("'*** " + Message);
            SwApp.RecordLine("");
        }
 

        public SldWorks swApp;
 
    }

}



Provide feedback on this topic

SOLIDWORKS welcomes your feedback concerning the presentation, accuracy, and thoroughness of the documentation. Use the form below to send your comments and suggestions about this topic directly to our documentation team. The documentation team cannot answer technical support questions. Click here for information about technical support.

* Required

 
*Email:  
Subject:   Feedback on Help Topics
Page:   Create Linear Dynamic Study Example (C#)
*Comment:  
*   I acknowledge I have read and I hereby accept the privacy policy under which my Personal Data will be used by Dassault Systèmes

Print Topic

Select the scope of content to print:

x

We have detected you are using a browser version older than Internet Explorer 7. For optimized display, we suggest upgrading your browser to Internet Explorer 7 or newer.

 Never show this message again
x

Web Help Content Version: API Help (English only) 2020 SP05

To disable Web help from within SOLIDWORKS and use local help instead, click Help > Use SOLIDWORKS Web Help.

To report problems encountered with the Web help interface and search, contact your local support representative. To provide feedback on individual help topics, use the “Feedback on this topic” link on the individual topic page.