Expand WprowadzenieWprowadzenie
Expand AdministracjaAdministracja
Expand Interfejs użytkownikaInterfejs użytkownika
Expand Podstawy SolidWorksPodstawy SolidWorks
Expand Przejście z 2D do 3DPrzejście z 2D do 3D
Expand ZłożeniaZłożenia
Expand CircuitWorksCircuitWorks
Expand KonfiguracjeKonfiguracje
Expand SolidWorks CostingSolidWorks Costing
Expand Design CheckerDesign Checker
Expand Badania projektu w SolidWorksBadania projektu w SolidWorks
Expand Rysunki i opisywanie szczegółówRysunki i opisywanie szczegółów
Expand DFMXpressDFMXpress
Expand DriveWorksXpressDriveWorksXpress
Expand FloXpressFloXpress
Expand Import i eksportImport i eksport
Expand Projekty wielkoskaloweProjekty wielkoskalowe
Expand Wyświetlanie modeluWyświetlanie modelu
Expand Projektowanie formProjektowanie form
Expand Badania ruchuBadania ruchu
Expand Części i operacjeCzęści i operacje
Expand Wyznaczanie trasyWyznaczanie trasy
Expand Arkusz blachyArkusz blachy
Collapse SimulationSimulation
Expand SimulationXpressSimulationXpress
Expand SzkicowanieSzkicowanie
Expand Produkty SustainabilityProdukty Sustainability
Expand SolidWorks UtilitiesSolidWorks Utilities
Expand TolerancjeTolerancje
Expand ToolboxToolbox
Expand Konstrukcje spawaneKonstrukcje spawane
Expand Workgroup PDMWorkgroup PDM
Expand Rozwiązywanie problemówRozwiązywanie problemów
Expand GlosariuszGlosariusz
Ukryj spis treści

Model plastyczny wg Misesa

Kryterium ustępowania można zapisać w postaci:

gdzie s jest naprężeniem skutecznym, a s Y jest granicą plastyczności uzyskaną z badań jednoosiowych. Model von Misesa można wykorzystać do opisania zachowania metali. Podczas stosowania tego modelu materiału, należy pamiętać o poniższych zagadnieniach:

  • Założono niewielką plastyczność odkształceń w przypadku użycia małych przemieszczeń lub dużych przemieszczeń.

  • Przyjęto skojarzone założenie reguły płynięcia.

  • Dostępne są zarówno reguły utwardzania izotropowego, jak i kinematycznego. Gdy zarówno promień, jak i środek powierzchni ustępowania w przestrzeni dewiatoryjnej może zmieniać się względem historii obciążenia, wykorzystywana jest liniowa kombinacja utwardzania izotropowego i kinematycznego.

Parametr RK definiuje proporcję utwardzania kinematycznego i izotropowego.

W przypadku czysto izotropowego utwardzania, parametr RK ma wartość 0. Promień powierzchni ustępowania zwiększa się, lecz jej środek pozostaje nieruchomy w przestrzeni dewiatoryjnej.

W przypadku czysto kinematycznego utwardzania, parametr RK ma wartość 1. Promień powierzchni ustępowania pozostaje stały, lecz jej środek może przemieszczać się w przestrzeni dewiatoryjnej.

  • Dwuliniowa lub wieloliniowa krzywa jednoosiowego rozciągania może zostać wprowadzona. W przypadku definiowania dwuliniowej krzywej rozciągania, granica plastyczności i współczynnik sprężystości wzdłużnej są wprowadzane za pomocą okna dialogowego Materiał. W przypadku definiowania wieloliniowej krzywej rozciągania, należy zdefiniować krzywą rozciągania.

  • Podczas definiowania krzywej rozciągania, pierwszym punktem na krzywej powinien być punkt ustępowania materiału. Właściwości materiału, takie jak współczynnik sprężystości wzdłużnej, granica plastyczności, itp. zostaną pobrane z krzywej rozciągania, jeżeli jest dostępna, a nie z tabeli właściwości materiału w oknie dialogowym Materiał. Tylko współczynnik Poissona (NUXY) zostanie pobrany z tabeli.

Definiowanie krzywych rozciągania nie jest obsługiwane w badaniach testu upuszczenia.

  • Parametry granicy plastyczności i współczynnika sprężystości dla dwuliniowej krzywej rozciągania można skojarzyć z krzywymi temperaturowymi, aby wykonać analizę termoplastyczną.

  • Zalecane jest użycie metody iteracyjnej NR (Newton-Raphson).

Model Huber-von Mises może być używany z elementami bryłowymi (jakości roboczej i wysokiej) oraz grubej skorupy (jakości roboczej i wysokiej) .

Termoplastyczność nie jest dostępna dla elementów skorupowych.

Poniższy rysunek przedstawia typową krzywą rozciągania materiału plastycznego:

Analiza dużego odkształcenia

W teorii plastyczności dużego odkształcenia definiowana jest logarytmiczna miara odkształcenia jako:

gdzie: U jest właściwym tensorem rozciągnięcia, zwykle uzyskiwanym z właściwego rozkładu biegunowego gradientu deformacji F (tj. F = R U, R jest tensorem obrotu). Przyrostowe odkształcenie logarytmiczne jest obliczane jako:

gdzie: B (n+1/2) jest macierzą odkształcenia-przemieszczenia obliczaną w kroku rozwiązania n+1/2, a D u jest przyrostowym wektorem przemieszczeń. Należy zauważyć, że powyższa postać jest przybliżeniem drugiego stopnia dokładnego wzoru.

Natężenie naprężenia przyjęto jako natężenie Greena-Naghdiego, aby uzyskać prawidłową niezmienność lub obiektywność konstytucyjnego modelu. Poprzez transformację natężenia naprężenia z układu globalnego do układu R,

Cały model konstytucyjny przybierze identyczną postać jak w teorii małego odkształcenia. Teoria plastyczności dużego odkształcenia jest stosowana do kryterium ustępowania von Misesa, skojarzonej reguły płynięcia oraz izotropowego lub kinematycznego utwardzania (dwuliniowego lub wieloliniowego). Zależność właściwości materiału od temperatury materiału jest obsługiwana przez dwuliniowe utwardzanie. W bieżącym przypadku używany jest algorytm promieniowo-powrotny. Podstawową zasadą jest przybliżenie wektora normalnego N przez:

gdzie:

Poniższy rysunek ilustruje powyższe dwa równania.

Wektor siły elementu i macierze sztywności są obliczane w oparciu o zaktualizowane wyrażenie Lagrange'a. Naprężenia Cauchy'ego, naprężenia logarytmiczne i bieżąca grubość (tylko w elementach skorupowych) są zapisywane w pliku wyjściowym.

Sprężystość w bieżącym przypadku jest modelowana w postaci hipersprężystej, która zakłada niewielkie odkształcenia elastyczne, lecz dopuszcza dowolnie duże odkształcenia plastyczne. W przypadku problemów sprężystych dużego odkształcenia można użyć hipersprężystych modeli materiału, takich jak Mooney-Rivlin.

Naprężenie Cauchy'ego (rzeczywiste) i naprężenie logarytmiczne należy użyć przy definiowaniu wieloliniowej krzywej rozciągania.

Porównanie kryteriów plastyczności wg Tresca i von Misesa



Wyraź swoje opinie dotyczące tego tematu

SOLIDWORKS docenia wszelkie informacje i uwagi dostarczone przez użytkownika na temat prezentacji, dokładności oraz prawidłowości dokumentacji. Proszę użyć poniższego formularza, aby wysłać komentarze I sugestie na temat tego tematu do naszego zespołu dokumentacyjnego. Zespół dokumentacyjny nie może udzielać informacji na pytania natury technicznej. Proszę kliknąć tutaj, aby uzyskać informacje dotyczące pomocy technicznej.

* Wymagane

 
*Email:  
Temat:   Opinie dotyczące tematów pomocy
Strona:   Model plastyczny wg Misesa
*Komentarz:  
*   Oświadczam, że zapoznałem/zapoznałam się z polityką prywatności, zgodnie z którą moje dane osobowe będą wykorzystywane przez firmę Dassault Systèmes, i niniejszym ją akceptuję

Wydrukuj temat

Wybierz zakres treści do druku:

x

Wykryliśmy że używasz przeglądarki w wersji starszej niż Internet Explorer 7. Dla zoptymalizowanego wyświetlania sugerujemy uaktualnienie przeglądarki do Internet Explorer 7 lub nowszej.

 Nie pokazuj tego komunikatu ponownie
x

Wersja zawartości pomocy w sieci Web: SOLIDWORKS 2012 SP05

Aby wyłączyć pomoc w sieci Web w oprogramowaniu SOLIDWORKS i użyć zamiast tego pomocy lokalnej, należy kliknąć Pomoc > Użyj pomocy SOLIDWORKS w sieci Web.

Aby zgłosić problemy związane z interfejsem lub funkcją wyszukiwania pomocy w sieci Web, należy skontaktować się z lokalnym przedstawicielem pomocy technicznej. Aby wyrazić opinie dotyczące poszczególnych tematów pomocy, należy użyć łącza “Opinie dotyczące tego tematu” na stronie danego tematu.