Equations of Motion

Single Degree of Freedom (SDOF) Systems

Consider the simple mass-spring system. The mass (m) is subjected to a force F(t) in the u direction as, a function of time. The mass is allowed to move in the u direction only and hence this is a Single-Degree-Of-Freedom (SDOF) system. The motion is resisted by a spring of stiffness (k)

Writing Newton's Second Law (force equals mass times acceleration) for this system at time (t) results in:

F(t) - ku(t) = mu..(t)

or:

mu..(t) + ku(t) = F(t)

where:

u..(t) is the acceleration of the mass at time (t) and it is equal to the second derivative of u with respect to time

k = is the stiffness of the spring

Theoretically, if the mass is displaced and released, it will continue to vibrate with the same amplitude forever. In practice, the mass vibrates with progressively smaller amplitudes until it comes to rest. This phenomenon is called damping and it is caused by loss of energy through friction and other effects. Damping is a complex phenomenon. For the purpose of this discussion, assume that the damping force is proportional to the velocity. This type of damping is called viscous damping.

Considering damping, the above equation becomes:

mu..(t) + cu.(t) + ku(t) = F(t)

where:

u.(t) is the velocity of the mass at time (t), and it is equal to the first derivative of u with respect to time

In static studies, velocity and acceleration are so small that they can be neglected and F and u are not functions of time. The above equation reduces to: F=ku.

Multi Degree of Freedom (MDOF) Systems

For a Multi-Degree-of-Freedom (MDOF) system, m, c, and k become matrices instead of single values and the equations of motion are expressed as:

where:

[M]: mass matrix

[K]: stiffness matrix

[C]: damping matrix

{u(t)}: displacement vector at time t (displacement components of every node)

: acceleration vector at time t (acceleration components of every node)

: velocity vector at time t (velocity components of every node)

{f(t)}: time varying load vector (force components of every node)

Provide feedback on this topic

* Required

 *Email: Subject: Feedback on Help Topics Page: Equations of Motion *Comment: * I acknowledge I have read and I hereby accept the privacy policy under which my Personal Data will be used by Dassault Systèmes

Print Topic

Select the scope of content to print:

x

We have detected you are using a browser version older than Internet Explorer 7. For optimized display, we suggest upgrading your browser to Internet Explorer 7 or newer.

Never show this message again
x

Web Help Content Version: SOLIDWORKS 2016 SP05

To disable Web help from within SOLIDWORKS and use local help instead, click Help > Use SOLIDWORKS Web Help.

To report problems encountered with the Web help interface and search, contact your local support representative. To provide feedback on individual help topics, use the “Feedback on this topic” link on the individual topic page.