Deformación unitaria plana

La opción de la simplificación 2D modela el problema mediante una suposición de deformación unitaria plana. El desplazamiento en una de las direcciones es insignificante con respecto a las otras dos. La condición de deformación unitaria plana es válida si:

  • Una de las cotas es mucho mayor que las otras dos.
  • Las fuerzas en plano no varían a lo largo de la cota más grande.
  • Las fuerzas que actúan de forma normal al plano de sección son insignificantes.

La figura muestra un sólido grueso bajo los efectos de cargas uniformes. La cota de Y es mucho mayor que las cotas de X y Z. Para modelar el problema, cree un plano de sección que sea paralelo al plano XZ, especifique el espesor y aplique cargas y sujeciones a las aristas.

Puede crear varios sólidos 2D mediante un plano de sección y definir condiciones de contacto entre ellos.

Las siguientes simplificaciones son válidas para los resultados de la simulación.

Desplazamiento, carga y temperatura

El desplazamiento y la temperatura no varían a lo largo del espesor. Para el sólido grueso:

donde u es el vector de desplazamiento. Además, uy = 0,

donde P es el vector de carga. Además, Py=0,

y

donde T es la temperatura.

Tensión Todos los componentes de tensión son distintos de cero. Sin embargo, los componentes de tensión fuera del plano existen como consecuencia del efecto del coeficiente de Poisson y no tienen una función importante en el análisis.
Deformación unitaria

Los componentes de tensión fuera del plano son nulos. Sólo existen los componentes de tensión en el plano. Para el sólido grueso:

donde ε representa la tensión normal y γ representa la deformación unitaria cortante.