Hide Table of Contents

Create Linear Dynamic Random Vibration Study Example (C#)

This example shows how to create a linear dynamic study with a random vibration analysis and get some study options.

//--------------------------------------------------------------------------
// Preconditions:
// 1. Add the SOLIDWORKS Simulation as an add-in (in SOLIDWORKS, click 
//    Tools > Add-ins > SOLIDWORKS Simulation > OK).

// 2. Add the SOLIDWORKS Simulation primary interop assembly as a reference
//    (in the IDE, click Project > Add Reference > .NET > 
//    SolidWorks.Interop.cosworks > OK).

// 3. Ensure that the specified file to open exists.
// 4. Ensure that the c:\temp folder exists.
//
// Postconditions:
// 1. Opens the specified file.
// 2. Creates a linear dynamic study for random vibration analysis.
// 3. Runs the analysis.
// 4. Prints some study options and results to the Immediate window.
// 5. Saves the solution step, displacement, velocity,
//    and stress result files to c:\temp.
//
// NOTE: Because the model is used elsewhere, do not save any changes.
//---------------------------------------------------------------------------
using Microsoft.VisualBasic;
using System;
using System.Collections;
using System.Collections.Generic;
using System.Data;
using System.Diagnostics;
using SolidWorks.Interop.sldworks;
using SolidWorks.Interop.swconst;
using SolidWorks.Interop.cosworks;
using System.Runtime.InteropServices;
namespace CreateDynRandVibeStudy_CSharp.csproj
{
    partial class SolidWorksMacro
    {
        public void Main()
        {
            ModelDoc2 Part = default(ModelDoc2);
            CosmosWorks COSMOSWORKS = default(CosmosWorks);
            CwAddincallback CWAddinCallBack = default(CwAddincallback);
            CWModelDoc ActDoc = default(CWModelDoc);
            CWStudyManager StudyMngr = default(CWStudyManager);
            CWStudy Study = default(CWStudy);
            CWShellManager ShellMgr = default(CWShellManager);
            CWMaterial ShellMat = default(CWMaterial);
            CWLoadsAndRestraintsManager LBCMgr = default(CWLoadsAndRestraintsManager);
            CWDistributedMass CWDistribMass = default(CWDistributedMass);
            CWDynamicStudyOptions DynStudyOptions = default(CWDynamicStudyOptions);
            object CWBaseExcitationEntity = null;
            object CWDirectionEntity = null;
            int longstatus = 0;
            int longwarnings = 0;
            int errCode = 0;
            bool boolstatus = false;
            int nStep = 0;
            object pDisp5 = null;
            object[] DispArray1 = new object[1];
            object[] DispArray3 = new object[1];
            object[] Disp = null;
            object[] Stress = null;
            object[] Velocity = null;
            object[] Acceleration = null;
            string sStudyName = null;
            CWStudyResultOptions ResultOptions = default(CWStudyResultOptions);
            CWDampingOptions DampingOptions = default(CWDampingOptions);
            object[] DampingRatios = new object[9];
            int i = 0;
            int freqOption = 0;
            double freqValue = 0;
            int bChecked = 0;
            object[] forces2 = null;
            object selectedAndModelReactionFM = null;
            object selectedOnlyReactionFM = null;
            CWShell CWFeatObj1 = default(CWShell);
            CWPressure CWFeatObj2 = default(CWPressure);
            CWRestraint CWFeatObj3 = default(CWRestraint);
            CWMesh CWFeatObj4 = default(CWMesh);
            CWResults CWFeatObj5 = default(CWResults);
            int param = 0;
            double dParam = 0;
            double inRadius = 0;
            double outRadius = 0;
 
            //Tolerances and baselines
            const double MeshEleSize = 26.5868077635828;
            const double MeshTol = 1.32934038817914;
 
            //Open document
            Part = swApp.OpenDoc6("C:\\Users\\Public\\Documents\\SOLIDWORKS\\SOLIDWORKS 2018\\samples\\tutorial\\api\\lineardynamic.SLDPRT", (int)swDocumentTypes_e.swDocPART, (int)swOpenDocOptions_e.swOpenDocOptions_Silent, ""ref longstatus, ref longwarnings);
            if (Part == null)
                ErrorMsg(swApp, "Failed to open lineardynamic.SLDPRT");
 
            //Add-in callback
            CWAddinCallBack = (CwAddincallback)swApp.GetAddInObject("CosmosWorks.CosmosWorks");
            if (CWAddinCallBack == null)
                ErrorMsg(swApp, "Failed to get CwAddincallback object");
            COSMOSWORKS = CWAddinCallBack.CosmosWorks;
            if (COSMOSWORKS == null)
                ErrorMsg(swApp, "Failed to get CosmosWorks object");
 
            //Get active document
            ActDoc = COSMOSWORKS.ActiveDoc;
            if (ActDoc == null)
                ErrorMsg(swApp, "Failed to get active document");
 
            //Create a dynamic random vibration study
            StudyMngr = ActDoc.StudyManager;
            if (StudyMngr == null)
                ErrorMsg(swApp, "Failed to get study manager object");
 
            sStudyName = "Dynamic_Random_Vibration";
            Study = StudyMngr.CreateNewStudy3(sStudyName, (int)swsAnalysisStudyType_e.swsAnalysisStudyTypeDynamic, (int)swsDynamicAnalysisSubType_e.swsDynamicAnalysisSubTypeRandom, out errCode);
 
            Debug.Print("Linear dynamic study with random vibration analysis");
            Debug.Print("");
            Debug.Print("Study configuration name is " + Study.ConfigurationName);
            Debug.Print("Dynamic analysis subtype as defined in swsAnalysisStudyType_e is " + Study.DynamicAnalysisSubType);
            Debug.Print("Dynamic study options...");
 
            DynStudyOptions = Study.DynamicStudyOptions;
 
            errCode = DynStudyOptions.GetFrequencyOption2(out freqOption, out freqValue);
            Debug.Print("  Frequency option (0=number of frequencies, 1=upper bound): " + freqOption);
            Debug.Print("  No. of frequencies or upper-bound frequency: " + freqValue);
            errCode = DynStudyOptions.GetFrequencyShiftOption2(out bChecked, out freqValue);
            Debug.Print("  Is frequency shift enabled (0=no, 1=yes)? " + bChecked);
            Debug.Print("  Frequency shift: " + freqValue);
 
            // automatic
            errCode = DynStudyOptions.SetIncompatibleBondingOption2(0);
            // do not use soft springs to stabilize model
            errCode = DynStudyOptions.SetUseSoftSpring2(0);
            errCode = DynStudyOptions.SetResultFolderPath2("c:\\temp");
            // FFEPlus
            DynStudyOptions.SolverType = 2;
 
            errCode = DynStudyOptions.GetRandomVibrationAnalysisMethod2(out param);
            Debug.Print("  Analysis method as defined in swsRandomVibrationAnalysisMethod_e: " + param);
            errCode = DynStudyOptions.GetRandomVibrationBiasingParameter2(out dParam);
            Debug.Print("  Biasing parameter: " + param);
            errCode = DynStudyOptions.GetRandomVibrationCorrelationOption2(out param);
            Debug.Print("  Correlation option as defined in swsRandomVibrationCorrelationOption_e: " + param);
            errCode = DynStudyOptions.GetRandomVibrationCrossModeCutOffRatio2(out dParam);
            Debug.Print("  Cross-mode cut-off ratio: " + param);
            errCode = DynStudyOptions.GetRandomVibrationFrequencyLowerLimit2(out dParam);
            Debug.Print("  Operating frequency lower limit: " + param);
            errCode = DynStudyOptions.GetRandomVibrationFrequencyUnits2(out param);
            Debug.Print("  Units of operating frequency as defined in swsFrequencyUnit_e: " + param);
            errCode = DynStudyOptions.GetRandomVibrationFrequencyUpperLimit2(out dParam);
            Debug.Print("  Operating frequency upper limit: " + param);
            errCode = DynStudyOptions.GetRandomVibrationGaussIntegrationOrder2(out param);
            Debug.Print("  Gauss integration order as defined in swsGaussIntegrationOrder_e: " + param);
            errCode = DynStudyOptions.GetRandomVibrationNoOfFrequencyPoints2(out param);
            Debug.Print("  Number of frequency points: " + param);
            errCode = DynStudyOptions.GetRandomVibrationPartialCorrelationDetails2(out param, out inRadius, out outRadius);
            Debug.Print("  Partially correlated units as defined in swsLinearUnit_e: " + param);
            Debug.Print("  Inside radius: " + inRadius);
            Debug.Print("  Outside radius: " + outRadius);
 
            Debug.Print("");
 
            //Set study result options
            Debug.Print("Study result options...");
            ResultOptions = Study.StudyResultOptions;
            ResultOptions.SaveResultsForSolutionStepsOption = 1;
            // save solution step results
            ResultOptions.SaveDisplacementsAndVelocitiesOption = 1;
            // save displacements and velocities
            ResultOptions.SaveStresses = 1;
            // save stresses
            //Solution step set #1
            errCode = ResultOptions.SetSolutionStepsSetInformation(1, 10, 100, 3);
            Debug.Print("  Set solution steps set #1 (10-100, inc=3)? (0=success): " + errCode);
            //Solution step set #3
            errCode = ResultOptions.SetSolutionStepsSetInformation(3, 100, 1000, 5);
            Debug.Print("  Set solution steps set #3 (100-1000, inc=5)? (0=success): " + errCode);
            Debug.Print("");
 
            //Set damping options
            DampingOptions = Study.DampingOptions;
            DampingOptions.DampingType = 0;
            //Modal damping
            DampingRatios[0] = 1;
            DampingRatios[1] = 5;
            DampingRatios[2] = 3.45;
            DampingRatios[3] = 6;
            DampingRatios[4] = 15;
            DampingRatios[5] = 15;
            DampingRatios[6] = 16;
            DampingRatios[7] = 25;
            DampingRatios[8] = 34.5;
            errCode = DampingOptions.SetDampingRatios(3, (DampingRatios));
            DampingOptions.ComputeFromMaterialDamping = 0;  // do not use the material damping ratio
 
            object PID = null;
            object SelObj = null;
            object obj = null;
 
            //Get face by persistent ID
            boolstatus = Part.Extension.SelectByID2("""FACE", 0.367377178180561, 0.0153999999998859, -0.443699715030164, false, 0, null, 0);
            obj = ((SelectionMgr)(Part.SelectionManager)).GetSelectedObject6(1, -1);
            PID = Part.Extension.GetPersistReference3(obj);
            SelObj = Part.Extension.GetObjectByPersistReference3((PID), out errCode);
            DispArray1[0] = SelObj;  //Face
 
            //Get edge by persistent ID
            boolstatus = Part.Extension.SelectByID2("""EDGE", 0.473843326221299, 0.0160904480509885, -0.000690335842989498, false, 0, null, 0);
            obj = ((SelectionMgr)(Part.SelectionManager)).GetSelectedObject6(1, -1);
            PID = Part.Extension.GetPersistReference3(obj);
            CWBaseExcitationEntity = Part.Extension.GetObjectByPersistReference3((PID), out errCode);
            DispArray3[0] = CWBaseExcitationEntity;  //Edge
 
            //Get Axis1 reference geometry by persistent ID
            boolstatus = Part.Extension.SelectByID2("Axis1""AXIS", -0.0320045390890095, 0.0639408825367532, -0.0319259521004658, false, 0, null, 0);
            obj = ((SelectionMgr)(Part.SelectionManager)).GetSelectedObject6(1, -1);
            PID = Part.Extension.GetPersistReference3(obj);
            CWDirectionEntity = Part.Extension.GetObjectByPersistReference3((PID), out errCode);
            pDisp5 = CWDirectionEntity;
 
            //Add materials
            ShellMgr = Study.ShellManager;
            if (ShellMgr == null)
                ErrorMsg(swApp, "Failed to get shell manager object");
 
            CWFeatObj1 = ShellMgr.GetShellAt(0, out errCode);
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to get shell component");
            ShellMat = CWFeatObj1.GetDefaultMaterial();
            ShellMat.MaterialUnits = 0;
            ShellMat.SetPropertyByName("EX", 2000000000000.0, 0);
            ShellMat.SetPropertyByName("NUXY", 0.25, 0);
            errCode = CWFeatObj1.SetShellMaterial(ShellMat);
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to apply material");
 
            CWFeatObj1.ShellBeginEdit();
            CWFeatObj1.Formulation = 1;  // thick shell
            CWFeatObj1.ShellUnit = 1;  // centimeters
            CWFeatObj1.ShellThickness = 5;  // 5 cm
            CWFeatObj1.ShellOffsetOption = 3;  // specify reference surface
            CWFeatObj1.ShellOffsetValue = 0.3;
            errCode = CWFeatObj1.ShellEndEdit();
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to create shell");
            CWFeatObj1 = null;
 
            //Get loads and restraints manager
            LBCMgr = Study.LoadsAndRestraintsManager;
            if (LBCMgr == null)
                ErrorMsg(swApp, "Failed to get loads and restraints manager");
 
            //Create normal pressure
            CWFeatObj2 = LBCMgr.AddPressure((int)swsPressureType_e.swsPressureTypeNormal, (DispArray1), nullout errCode);
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to create normal pressure");
            CWFeatObj2.PressureBeginEdit();
            Debug.Print("Normal pressure values...");
            Debug.Print("  Pressure unit in swsStrengthUnit_e units: " + CWFeatObj2.Unit);
            Debug.Print("  Pressure value: " + CWFeatObj2.Value);
            Debug.Print("  Pressure phase angle (-1 if not set): " + CWFeatObj2.PhaseAngle);
            Debug.Print("  Pressure phase angle unit in swsPhaseAngleUnit_e units: " + CWFeatObj2.PhaseAngleUnit);
            errCode = CWFeatObj2.PressureEndEdit();
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to apply normal pressure value");
            CWFeatObj2 = null;
            Debug.Print(" ");
 
            //Add a restraint
            CWFeatObj3 = LBCMgr.AddRestraint(0, (DispArray3), pDisp5, out errCode);
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to create restraint");
            CWFeatObj3.RestraintBeginEdit();
            CWFeatObj3.SetTranslationComponentsValues(0, 0, 1, 0.0, 0.0, 0.0);
            CWFeatObj3.SetRotationComponentsValues(0, 0, 0, 0.0, 0.0, 0.0);
            CWFeatObj3.Unit = 2;
            errCode = CWFeatObj3.RestraintEndEdit();
            if (errCode != 0)
                ErrorMsg(swApp, "Restraint end-edit failed");
 
            //Create mesh
            CWFeatObj4 = Study.Mesh;
            if (CWFeatObj4 == null)
                ErrorMsg(swApp, "Failed to create mesh object");
            CWFeatObj4.MesherType = 0;
            CWFeatObj4.Quality = 1;
 
            errCode = Study.CreateMesh(0, MeshEleSize, MeshTol);
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to create mesh");
            Debug.Print("Worst Jacobian ratio for the mesh: " + CWFeatObj4.GetWorstJacobianRatio());
            Debug.Print("");
 
            //Add distributed mass
            CWDistribMass = LBCMgr.AddDistributedMass((DispArray1), 0, 1, ref errCode);
            Debug.Print("Total distributed mass: " + CWDistribMass.TotalMass);
            Debug.Print("  Units in swsUnitSystem_e units: " + CWDistribMass.Units);
            Debug.Print("");
 
            //Run analysis
            Debug.Print("Running the analysis");
            Debug.Print("");
            errCode = Study.RunAnalysis();
            if (errCode != 0)
                ErrorMsg(swApp, "Analysis failed with error code as defined in swsRunAnalysisError_e: " + errCode );
 
            //Get results
            CWFeatObj5 = Study.Results;
            if (CWFeatObj5 == null)
                ErrorMsg(swApp, "Failed to get results object");
 
            Debug.Print("Study results...");
            nStep = CWFeatObj5.GetMaximumAvailableSteps();
            Debug.Print("  Maximum available steps: " + nStep);
 
            //Get algebraic minimum/maximum resultant displacements
            Disp = (object[])CWFeatObj5.GetMinMaxDisplacement(3, nStep, null, 0, out errCode);
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to get displacement results");
            Debug.Print("  Min/Max URES Resultant Displacements (Node, Min, Node, Max):");
            for (i = 0; i <= Disp.GetUpperBound(0); i++)
            {
                Debug.Print("  * " + Disp[i]);
            }
            Debug.Print("");
 
            //Get algebraic minimum/maximum von Mises stresses
            Stress = (object[])CWFeatObj5.GetMinMaxStress(9, 0, nStep, null, 3, out errCode);
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to get stress results");
            Debug.Print("  Algebraic Min/Max von Mises Stresses (Node, Min, Node, Max):");
            for (i = 0; i <= Stress.GetUpperBound(0); i++)
            {
                Debug.Print("  * " + Stress[i]);
            }
            Debug.Print("");
 
            //Get algebraic minimum/maximum velocities
            Velocity = (object[])CWFeatObj5.GetMinMaxVelocity(0, nStep, CWDirectionEntity, 0, out errCode);
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to get velocity results");
            Debug.Print("  Algebraic Min/Max Velocities (Node, Min, Node, Max):");
            for (i = 0; i <= Velocity.GetUpperBound(0); i++)
            {
                Debug.Print("  * " + Velocity[i]);
            }
            Debug.Print("");
 
            //Get algebraic minimum/maximum accelerations
            Acceleration = (object[])CWFeatObj5.GetMinMaxAcceleration(0, nStep, CWDirectionEntity, 0, out errCode);
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to get acceleration results");
            Debug.Print("  Algebraic Min/Max Accelerations (Node, Min, Node, Max):");
            for (i = 0; i <= Acceleration.GetUpperBound(0); i++)
            {
                Debug.Print("  * " + Acceleration[i]);
            }
 
            //Reaction forces and moments for entire model and selected face at solution step 40
            forces2 = (object[])CWFeatObj5.GetReactionForcesAndMomentsWithSelections(40, null, (int)swsForceUnit_e.swsForceUnitNOrNm, (DispArray1), out selectedAndModelReactionFM, out selectedOnlyReactionFM, out errCode);
            object[] selFM = (object[])selectedOnlyReactionFM;
            if (errCode != 0)
                ErrorMsg(swApp, "Failed to get reaction forces and moments");
            Debug.Print("  Reaction forces (N) and moments (N-m) for selected face ");
            Debug.Print("  {xcoord_force, ycoord_force, zcoord_force, resultant_force, ");
            Debug.Print("   xcoord_moment, ycoord_moment, zcoord_moment, resultant_moment}:");
            for (i = 0; i <= selFM.GetUpperBound(0); i++)
            {
                Debug.Print("  * " + selFM[i]);
            }
        }
 
        public void ErrorMsg(SldWorks SwApp, string Message)
        {
            SwApp.SendMsgToUser2(Message, 0, 0);
            SwApp.RecordLine("'*** WARNING - General");
            SwApp.RecordLine("'*** " + Message);
            SwApp.RecordLine("");
        }
 
 
        /// <summary>
        /// The SldWorks swApp variable is pre-assigned for you.
        /// </summary>
 
        public SldWorks swApp;
 
    }
}
 
 

 



Provide feedback on this topic

SOLIDWORKS welcomes your feedback concerning the presentation, accuracy, and thoroughness of the documentation. Use the form below to send your comments and suggestions about this topic directly to our documentation team. The documentation team cannot answer technical support questions. Click here for information about technical support.

* Required

 
*Email:  
Subject:   Feedback on Help Topics
Page:   Create Linear Dynamic Random Vibration Study Example (C#)
*Comment:  
*   I acknowledge I have read and I hereby accept the privacy policy under which my Personal Data will be used by Dassault Systèmes

Print Topic

Select the scope of content to print:

x

We have detected you are using a browser version older than Internet Explorer 7. For optimized display, we suggest upgrading your browser to Internet Explorer 7 or newer.

 Never show this message again
x

Web Help Content Version: API Help (English only) 2024 SP05

To disable Web help from within SOLIDWORKS and use local help instead, click Help > Use SOLIDWORKS Web Help.

To report problems encountered with the Web help interface and search, contact your local support representative. To provide feedback on individual help topics, use the “Feedback on this topic” link on the individual topic page.