Expand IntroductionIntroduction
Expand AdministrationAdministration
Expand User InterfaceUser Interface
Expand SolidWorks FundamentalsSolidWorks Fundamentals
Expand Moving from 2D to 3DMoving from 2D to 3D
Expand AssembliesAssemblies
Expand CircuitWorksCircuitWorks
Expand ConfigurationsConfigurations
Expand SolidWorks CostingSolidWorks Costing
Expand Design CheckerDesign Checker
Expand Design Studies in SolidWorksDesign Studies in SolidWorks
Expand Detailing and DrawingsDetailing and Drawings
Expand DFMXpressDFMXpress
Expand DriveWorksXpressDriveWorksXpress
Expand FloXpressFloXpress
Expand Import and ExportImport and Export
Expand Model DisplayModel Display
Expand Mold DesignMold Design
Expand Motion StudiesMotion Studies
Expand Parts and FeaturesParts and Features
Expand RoutingRouting
Expand Sheet MetalSheet Metal
Collapse SimulationSimulation
Welcome to SolidWorks Simulation Help
Accessing and Using Help
Legal Notices
SolidWorks Simulation Reference
Expand SolidWorks Simulation FundamentalsSolidWorks Simulation Fundamentals
Expand Analysis BackgroundAnalysis Background
Expand Simulation OptionsSimulation Options
Expand Simulation StudiesSimulation Studies
Expand Submodeling StudiesSubmodeling Studies
Expand Design StudiesDesign Studies
Expand Workflow for Performing 2D SimplificationWorkflow for Performing 2D Simplification
Expand Composite ShellsComposite Shells
Expand Loads and RestraintsLoads and Restraints
Expand MeshingMeshing
Expand Contact AnalysisContact Analysis
Collapse Simulation MaterialsSimulation Materials
Material Properties in Simulation
Applying a Material
Removing a Material
Expand Defining Stress-Strain CurvesDefining Stress-Strain Curves
Defining Temperature-Dependent Material Properties
Creating a Custom Material
Creating a Material Library
Managing Favorite Materials
Using Drag and Drop to Define Materials
Expand Applying Material from the SolidWorks Materials Web PortalApplying Material from the SolidWorks Materials Web Portal
Expand Material Dialog BoxMaterial Dialog Box
Collapse Material ModelsMaterial Models
Expand Elasticity ModelsElasticity Models
Expand Plasticity ModelsPlasticity Models
Expand Hyperelasticity ModelsHyperelasticity Models
Viscoelastic Model
Creep Model
Collapse Nitinol Material ModelNitinol Material Model
Nitinol Model Formulation
Flow Rule (Nitinol Material Model)
Expand ParametersParameters
Expand Analysis Library FeaturesAnalysis Library Features
Expand Viewing Analysis ResultsViewing Analysis Results
Expand Study ReportsStudy Reports
Expand Factor of Safety CheckFactor of Safety Check
Expand SimulationXpressSimulationXpress
Expand SketchingSketching
Expand Sustainability ProductsSustainability Products
Expand SolidWorks UtilitiesSolidWorks Utilities
Expand TolerancingTolerancing
Expand TolAnalystTolAnalyst
Expand ToolboxToolbox
Expand WeldmentsWeldments
Expand Workgroup PDMWorkgroup PDM
Expand TroubleshootingTroubleshooting
Glossary
Hide Table of Contents

Flow Rule (Nitinol Material Model)

Through adoption of the logarithmic strain definition, the deviatoric and volumetric components of the strain and stress tensors and their relations can be correctly expressed in a decoupled form.

First, we consider the total plastic & elastic strain vectors to be presented by:

ε(bar)p = εul ξs( n(bar) + α*m(bar))

ε(bar)e(bar) = ε(bar) - ε(bar)p

The Kirchhoff stress vector can then be evaluated from:

τ(bar) = p m(bar) + t(bar)

p = K (θ - 3 α εul ξs)

t = 2 G (e(bar) - εul ξsn(bar))

In the above formulations:

εul scalar parameter representing the maximum material plastic strain deformation [EUL]
ξs parameter between 0 and 1, as a measure of the plastic straining
θ volumetric strain = ε11 + ε22 + ε33
e(bar) deviatoric strain vector
t(bar) deviatoric stress vector
n(bar) norm of the deviatoric stress = t(bar) / (sqrt(2) σ(bar)) 
m(bar) the identity matrix in vector form: {1,1,1,0,0,0}T
K and G bulk and shear elastic moduli: K = E / [3(1-2ν)], G = E / [2(1+ν)]

The linear flow rule in the incremental form can be expressed, accordingly:

Loading: Δξs = ( 1.0 - ξs) ΔF / ( F - Rf1)

Unloading: Δξs = ξs ΔF / ( F - Rf2)

And the exponential flow rule, used when a nonzero β is defined:

Loading: Δξs = β1( 1.0 - ξs) ΔF / ( F - Rf1)2

Unloading: Δξs = β2ξs ΔF / ( F - Rf2)2

  • In general, shape-memory-alloys are found to be insensitive to rate-effects. Thus, in the above formulation “time” represents a pseudo variable, and its length does not affect the solution.
  • All the equations are presented here for tensile loading-unloading, since similar expressions (with compressive property parameters) can be used for the compressive loading-unloading conditions.
  • The incremental solution algorithm here uses a return-map procedure in the evaluation of stresses and constitutive equations for a solution step. Accordingly, the solution consists of two parts. Initially, a trial state is computed; then if the trial state violates the flow criterion, an adjustment is made to return the stresses to the flow surface.

References

  1. Auricchio, F., “A Robust Integration-Algorithm for a Finite-Strain Shape-Memory-Alloy Superelastic Model,” International Journal of Plasticity, vol. 17, pp. 971-990, 2001.
  2. Auricchio, F., Taylor, R.L., and Lubliner, J., “Shape-Memory-Alloys: Macromodeling and Numerical Simulations of the Superelastic Behavior,” Computer Methods in Applied Mechanics and Engineering, vol. 146, pp. 281-312, 1997.
  3. Bergan, P.G., Bathe, K.J., and Wunderlich, eds. “On Large Strain Elasto-Plastic and Creep Analysis,” Finite Elements Methods for Nonlinear Problems, Springer-Verlag 1985.
  4. Hughes, T., eds. “Numerical Implementation of Constitutive Models: Rate-Independent Deviatoric Plasticity,” Theoretical Foundation for Large-Scale Computations for Nonlinear Material Behavior, Martinus Nijhoff Publishers, Dordrecht, The Netherlands, 1984.


Provide feedback on this topic

SOLIDWORKS welcomes your feedback concerning the presentation, accuracy, and thoroughness of the documentation. Use the form below to send your comments and suggestions about this topic directly to our documentation team. The documentation team cannot answer technical support questions. Click here for information about technical support.

* Required

 
*Email:  
Subject:   Feedback on Help Topics
Page:   Flow Rule (Nitinol Material Model)
*Comment:  
*   I acknowledge I have read and I hereby accept the privacy policy under which my Personal Data will be used by Dassault Systèmes

Print Topic

Select the scope of content to print:



x

We have detected you are using a browser version older than Internet Explorer 7. For optimized display, we suggest upgrading your browser to Internet Explorer 7 or newer.

 Never show this message again
x

Web Help Content Version: SOLIDWORKS 2014 SP05

To disable Web help from within SOLIDWORKS and use local help instead, click Help > Use SOLIDWORKS Web Help.

To report problems encountered with the Web help interface and search, contact your local support representative. To provide feedback on individual help topics, use the “Feedback on this topic” link on the individual topic page.