Solvery analizy
W analizie metodą elementu skończonego (FEA), problem jest przedstawiany jako układ równań algebraicznych, które muszą zostać rozwiązane równocześnie. Istnieją dwie klasy metod rozwiązania: bezpośrednia i iteracyjna.
Metody bezpośrednie rozwiązują równania przy użyciu dokładnych technik numerycznych. Metody iteracyjne rozwiązują równania przy użyciu technik przybliżeniowych, w których w każdej iteracji zakładane jest rozwiązanie i obliczane są skojarzone z nim błędy. Iteracje są powtarzane do czasu, gdy błędy osiągną wartości do przyjęcia.
Oprogramowanie oferuje następujące wybory:
Wybieranie solvera
Wybór automatyczny solvera jest opcją domyślną dla badań statycznych, częstotliwości, wyboczenia i termicznych.
W przypadku problemów kontaktu wielopowierzchniowego, gdzie powierzchnia kontaktu jest odnajdowana w drodze kilku iteracji kontaktowych, preferowany jest solver Direct Sparse.
Dla badań nieliniowych modeli, które posiadają ponad 50 000 stopni swobody, aby uzyskać rozwiązanie w krótszym czasie efektywniejsze jest użycie solvera FFEPlus.
Obydwa solvery są efektywne dla niewielkich problemów (do 25 000 stopni swobody), jednakże w przypadku rozwiązywania dużych problemów różnice w wydajności (prędkości i użycia pamięci) mogą być znaczne.
Jeżeli solver wymaga większej ilości pamięci niż dostępna w komputerze, to wykorzystuje on przestrzeń dyskową do zapisania i odzyskania danych tymczasowych. Gdy taka sytuacja wystąpi, wyświetlany jest komunikat informujący, że rozwiązanie wykracza poza główną część systemu i postęp prac będzie wolniejszy. Jeżeli ilość danych do zapisania na dysku jest bardzo duża, postęp może być skrajnie powolny.
Poniższe czynniki pomogą w wyborze właściwego solvera:
Rozmiaru problemu. Generalnie solver FFEPlus jest szybszy przy rozwiązywaniu problemów o liczbie stopni swobody (DOF) powyżej 100 000. Jest on bardziej efektywny ze wzrostem rozmiarów problemu.
Zasobu komputera. Szczególnie solver Direct Sparse jest tym szybszy, im więcej pamięci jest dostępne w komputerze.
Właściwości materiału. Gdy współczynniki sprężystości materiałów użytych w modelu różnią się znacznie (jak np. stal i nylon), to solvery iteracyjne są mniej dokładne od metod bezpośrednich. W takich przypadkach zalecany jest solver bezpośredni.
Stan Solvera
Okno Stan Solvera pojawia się przy uruchomieniu badania. Dodatkowo do informacji postępu wyświetla ono:
Użycie pamięci
Ile upłynęło czasu
Informacje specyficzne dla badania takie jak stopnie swobody, liczba węzłów, liczba elementów
Informacje solvera takie jak typ solvera
Ostrzeżenia
Wszystkie badania używające solvera FFEPlus (iteracyjny) pozwalają na uzyskanie dostępu do wykresu konwergencji oraz parametrów solvera. Wykres konwergencji pomaga w wizualizacji konwergencji rozwiązania. Parametry solvera pozwalają na manipulowanie iteracjami solvera tak aby można było poprawić dokładność lub poprawić szybkość z mniej dokładnymi wynikami. Mona użyć wstępnie ustalonych wartości solvera lub zmienić:
Aby poprawić dokładność, należy zmniejszyć wartość progu zatrzymującego. W wolno zbiegających się sytuacjach, można poprawić szybkość; z mniej dokładnymi wynikami poprzez zwiększenie wartości progu zatrzymującego lub zmniejszenie maksymalnej liczby iteracji.