Expand IntroductionIntroduction
Expand AdministrationAdministration
Expand User InterfaceUser Interface
Expand SOLIDWORKS FundamentalsSOLIDWORKS Fundamentals
Expand Moving from 2D to 3DMoving from 2D to 3D
Expand AssembliesAssemblies
Expand CircuitWorksCircuitWorks
Expand ConfigurationsConfigurations
Expand SOLIDWORKS CostingSOLIDWORKS Costing
Expand Design CheckerDesign Checker
Expand Design Studies in SOLIDWORKSDesign Studies in SOLIDWORKS
Expand Detailing and DrawingsDetailing and Drawings
Expand DFMXpressDFMXpress
Expand DriveWorksXpressDriveWorksXpress
Expand FloXpressFloXpress
Expand SLDXML Data ExchangeSLDXML Data Exchange
Expand Import and ExportImport and Export
Expand Model DisplayModel Display
Expand Mold DesignMold Design
Expand Motion StudiesMotion Studies
Expand Parts and FeaturesParts and Features
Expand RoutingRouting
Expand Sheet MetalSheet Metal
Collapse SimulationSimulation
Welcome to SOLIDWORKS Simulation Help
Accessing and Using Help
Legal Notices
SOLIDWORKS Simulation Reference
Expand SOLIDWORKS Simulation FundamentalsSOLIDWORKS Simulation Fundamentals
Collapse Analysis BackgroundAnalysis Background
Expand Linear Static AnalysisLinear Static Analysis
Expand Frequency AnalysisFrequency Analysis
Collapse  Dynamic Analysis Dynamic Analysis
Equations of Motion
Linear Static versus Linear Dynamic Analysis
Expand Damping EffectsDamping Effects
Expand Harmonic AnalysisHarmonic Analysis
Expand Random Vibration AnalysisRandom Vibration Analysis
Expand Performing Linear Dynamic AnalysisPerforming Linear Dynamic Analysis
Expand Loads and Result Options for Dynamic AnalysisLoads and Result Options for Dynamic Analysis
Solution Accuracy for Linear Dynamic Analysis
Collapse Response Spectrum AnalysisResponse Spectrum Analysis
Analysis Procedure - Response Spectrum Analysis
Mode Combination Techniques
Performing a Response Spectrum Analysis
Response Spectrum Analysis Options
Expand Linearized Buckling AnalysisLinearized Buckling Analysis
Expand Thermal AnalysisThermal Analysis
Expand Nonlinear Static AnalysisNonlinear Static Analysis
Expand Drop Test StudiesDrop Test Studies
Expand Fatigue AnalysisFatigue Analysis
Expand Pressure Vessel Design OverviewPressure Vessel Design Overview
Expand Beams and TrussesBeams and Trusses
Expand 2D Simplification2D Simplification
Expand Simulation OptionsSimulation Options
Expand Simulation StudiesSimulation Studies
Expand Submodeling StudiesSubmodeling Studies
Expand Design StudiesDesign Studies
Expand Workflow for Performing 2D SimplificationWorkflow for Performing 2D Simplification
Expand Composite ShellsComposite Shells
Expand Loads and RestraintsLoads and Restraints
Expand MeshingMeshing
Expand Contact AnalysisContact Analysis
Expand Simulation MaterialsSimulation Materials
Expand ParametersParameters
Expand Analysis Library FeaturesAnalysis Library Features
Expand Viewing Analysis ResultsViewing Analysis Results
Expand Study ReportsStudy Reports
Expand Factor of Safety CheckFactor of Safety Check
Expand SimulationXpressSimulationXpress
Expand SketchingSketching
Expand SOLIDWORKS MBDSOLIDWORKS MBD
Expand SOLIDWORKS UtilitiesSOLIDWORKS Utilities
Expand SOLIDWORKS SustainabilitySOLIDWORKS Sustainability
Expand TolerancingTolerancing
Expand TolAnalystTolAnalyst
Expand ToolboxToolbox
Expand WeldmentsWeldments
Expand Workgroup PDMWorkgroup PDM
Expand TroubleshootingTroubleshooting
Glossary
Hide Table of Contents

Mode Combination Techniques

The maximum structural response is calculated by summing the contributions from each mode.

These mode combination techniques are available.

Technique Description
Square Root of the Sum of Squares (SRSS) This method estimates the peak response by the square root of the sum of the maximum modal responses squared.

Absolute Sum This method assumes that the maximum modal responses occur at the same time for all modes. It is the most conservative among the modal combination methods.

Complete Quadratic Combination (CQC) This method is based on random vibration theories. The peak response is estimated from the maximum modal values from the double summation equation.

where ρijis the cross-modal correlation coefficient and ξI and ξj are modal damping coefficients for modes I and j.

Naval Research Laboratory (NRL) The mode combination method recommended by the NRL takes the absolute value of the response for the mode that exhibits the largest response and adds it to the SRSS response of the remaining modes.

where represents the mode with the largest response among all modal responses.



Provide feedback on this topic

SOLIDWORKS welcomes your feedback concerning the presentation, accuracy, and thoroughness of the documentation. Use the form below to send your comments and suggestions about this topic directly to our documentation team. The documentation team cannot answer technical support questions. Click here for information about technical support.

* Required

 
*Email:  
Subject:   Feedback on Help Topics
Page:   Mode Combination Techniques
*Comment:  
*   I acknowledge I have read and I hereby accept the privacy policy under which my Personal Data will be used by Dassault Systèmes

Print Topic

Select the scope of content to print:




x

We have detected you are using a browser version older than Internet Explorer 7. For optimized display, we suggest upgrading your browser to Internet Explorer 7 or newer.

 Never show this message again
x

Web Help Content Version: SOLIDWORKS 2016 SP05

To disable Web help from within SOLIDWORKS and use local help instead, click Help > Use SOLIDWORKS Web Help.

To report problems encountered with the Web help interface and search, contact your local support representative. To provide feedback on individual help topics, use the “Feedback on this topic” link on the individual topic page.