線形静解析の仮定(Assumptions of Linear Static Analysis)

線形静解析では線形性解析、弾性解析、静的解析が仮定されます。
これらの仮定があてはまらない場合、Simulation 結果は無効です。

線形の仮定(Linearity Assumption)

引き起こされる反応は適用される荷重に直接比例するものとします。 例えば、荷重を2倍にすると、モデルの反応(変位、ひずみ、応力)も2倍になるということです。 以下の条件を満たしていれば、「線形の仮定」(linearity assumption) をすることができます:
  • 最も高い応力値(大きい応力値)が、原点からの直線で表現される応力-ひずみ曲線(stress-strain curve) の線形範囲内である場合。
  • 計算された最大変位がその部品を特徴づける寸法と比較して非常に小さいこと。 例えば、プレート部品の最大変位はその厚みと比較して非常に小さいものでなければならないし、ビーム部品の最大変位はその断面の最も小さい寸法と比較して非常に小さいものである必要があります。

線形の仮定を満たしていない場合は、非線形解析を使用してください。

弾性の仮定(Elasticity Assumption)

荷重を取り除くと、部品は元の形状に戻ります(永続的は変形はないものとします)。

弾性の仮定を満たしていない場合は、非線形解析を使用してください。

静的仮定(Static Assumption)

荷重はその最大強度に達するまでゆっくりと、だんだんに適用されるものとします。 荷重を急激に適用すると、別の変位、ひずみ、応力が発生します。

静的仮定を満たしていない場合は、動解析を使用してください。

線形の仮定(Linearity Assumption)



線形材料の応力-ひずみ関係(Stress-Strain Relation for Linear Material)

線形の材料では、応力-ひずみ関係が線形です。 直線の傾きは材料の弾性係数(E)です。