Expand IntroductionIntroduction
Expand AdministrationAdministration
Expand User InterfaceUser Interface
Expand SolidWorks FundamentalsSolidWorks Fundamentals
Expand Moving from 2D to 3DMoving from 2D to 3D
Expand AssembliesAssemblies
Expand CircuitWorksCircuitWorks
Expand ConfigurationsConfigurations
Expand Design CheckerDesign Checker
Expand Design Studies in SolidWorksDesign Studies in SolidWorks
Expand Drawings and DetailingDrawings and Detailing
Expand DFMXpressDFMXpress
Expand DriveWorksXpressDriveWorksXpress
Expand FloXpressFloXpress
Expand Import and ExportImport and Export
Expand Large Scale DesignLarge Scale Design
Expand Model DisplayModel Display
Expand Mold DesignMold Design
Expand Motion StudiesMotion Studies
Expand Parts and FeaturesParts and Features
Expand RoutingRouting
Expand Sheet MetalSheet Metal
Collapse SimulationSimulation
Welcome to SolidWorks Simulation Online Help
Access to Help
Conventions
Legal Notices
Expand Analysis BackgroundAnalysis Background
Expand Simulation FundamentalsSimulation Fundamentals
Expand Simulation InterfaceSimulation Interface
Expand Simulation OptionsSimulation Options
Expand Simulation StudiesSimulation Studies
Expand Design StudiesDesign Studies
Expand 2D Simplification Study2D Simplification Study
Expand Composite ShellsComposite Shells
Expand Loads and RestraintsLoads and Restraints
Expand MeshingMeshing
Collapse Material PropertiesMaterial Properties
Assigning Materials
Applying a Material
Removing a Material
Expand Creating a Custom MaterialCreating a Custom Material
Creating a Material Library
Managing Favorite Materials
Using Drag and Drop to Define Materials
Material Properties Used in SolidWorks Simulation
Isotropic and Orthotropic Materials
Temperature - Dependent Material Properties
Defining Stress-Strain Curves
Expand Material Dialog BoxMaterial Dialog Box
Collapse Material ModelsMaterial Models
Material Models
Plasticity Drucker - Prager Model
Plasticity Tresca Model
Plasticity von Mises Model
Viscoelastic Model
Linear Elastic Orthotropic Model
Linear Elastic Isotropic Model
Hyperelastic Ogden Model
Hyperelastic Mooney - Rivlin Model
Nitinol Material Model
Nonlinear Elastic Model
Creep Models
Comparison of Tresca and von Mises Criteria for Plasticity
Generalized Maxwell Model
Hyperelastic Blatz - Ko Model
Expand ParametersParameters
Expand Analysis LibraryAnalysis Library
Expand Viewing ResultsViewing Results
Expand Study ReportsStudy Reports
Expand Checking Stress ResultsChecking Stress Results
Expand SimulationXpressSimulationXpress
Expand SketchingSketching
Expand Sustainability ProductsSustainability Products
Expand SolidWorks UtilitiesSolidWorks Utilities
Expand TolerancingTolerancing
Expand ToolboxToolbox
Expand WeldmentsWeldments
Expand Workgroup PDMWorkgroup PDM
Expand TroubleshootingTroubleshooting
Expand GlossaryGlossary
Hide Table of Contents

Plasticity von Mises Model

The yield criterion can be written in the form:

where s is the effective stress and sY is the yield stress from uniaxial tests. The von Mises model can be used to describe the behavior of metals. In using this material model, the following considerations should be noted:

  • Small strain plasticity is assumed when small displacement or large displacement is used.

  • An associated flow rule assumption is made.

  • Both isotropic and kinematic hardening rules are available. A linear combination of isotropic and kinematic hardening is implemented when both the radius and the center of yield surface in deviatoric space can vary with respect to the loading history.

The parameter RK defines the proportion of kinematic and isotropic hardening.

For pure isotropic hardening, the parameter RK has the value 0. The radius of the yield surface expands but its center remains fixed in deviatoric space.

For pure kinematic hardening, the parameter RK has the value 1. The radius of the yield surface remains constant while its center can move in deviatoric space.'

  • A bilinear or multi-linear uniaxial stress-strain curve for plasticity can be input. For bilinear stress-strain curve definition, the yield strength and elastic modulus are input through the Material dialog box. For multi-linear stress-strain curve definition, a stress-strain curve should be defined.

  • When you define a stress-strain curve, the first point on the curve should be the yield point of the material. Material properties like elastic modulus, Yield strength, etc will be taken from the stress-strain curve when it is available and not from the material properties table in the Material dialog box. Only Poisson's ratio (NUXY) will be taken from the table.

Defining stress-strain curves is not supported by drop test studies.

  • The SIGYLD and ETAN parameters for bilinear stress-strain curve description can be associated with temperature curves to perform thermoplastic analysis.

  • The use of NR (Newton-Raphson) iterative method is recommended.

The Huber-von Mises model can be used with the solid (draft and high quality) and thick shell (draft and high quality) elements.

Thermo-plasticity is not available with shell elements.

The following figure depicts a typical stress-strain curve of a plastic material:

Large Strain Analysis

In the theory of large strain plasticity, a logarithmic strain measure is defined as:

where U is the right stretch tensor usually obtained from the right polar decomposition of the deformation gradient F (i.e., F = R U, R is the rotation tensor). The incremental logarithmic strain is estimated as:

where B(n+1/2) is the strain-displacement matrix estimated at solution step n+1/2 and Du is the incremental displacements vector. It is noted that the above form is a second-order approximation to the exact formula.

The stress rate is taken as the Green-Naghdi rate so as to make the constitutive model properly frame-invariant or objective. By transforming the stress rate from the global system to the R-system,

The entire constitutive model will be form-identical to the small strain theory. The large strain plasticity theory is applied to the von Mises yield criterion, associative flow rule and isotropic or kinematic hardening (bilinear or multi-linear). Temperature-dependency of material property is supported by bilinear hardening. The radial-return algorithm is used in the current case. The basic idea is to approximate the normal vector N by:

where,

The following figure illustrates the above two equations.

The element force vector and stiffness matrices are computed based on the updated Lagrangian formulation. The Cauchy stresses, logarithmic strains and current thickness (shell elements only) are recorded in the output file.

The elasticity in the current case is modeled in hyperelastic form that assumes small elastic strains but allows for arbitrarily large plastic strains. For large strain elasticity problems (rubber-like), you can use hyperelastic material models such as Mooney-Rivlin.

Cauchy (true) stress and logarithmic strain should be used in defining the multi-linear stress-strain curve.

Comparison of Tresca and von Mises Criteria for Plasticity



Provide feedback on this topic

SOLIDWORKS welcomes your feedback concerning the presentation, accuracy, and thoroughness of the documentation. Use the form below to send your comments and suggestions about this topic directly to our documentation team. The documentation team cannot answer technical support questions. Click here for information about technical support.

* Required

 
*Email:  
Subject:   Feedback on Help Topics
Page:   Plasticity von Mises Model
*Comment:  
*   I acknowledge I have read and I hereby accept the privacy policy under which my Personal Data will be used by Dassault Systèmes

Print Topic

Select the scope of content to print:




x

We have detected you are using a browser version older than Internet Explorer 7. For optimized display, we suggest upgrading your browser to Internet Explorer 7 or newer.

 Never show this message again
x

Web Help Content Version: SOLIDWORKS 2011 SP05

To disable Web help from within SOLIDWORKS and use local help instead, click Help > Use SOLIDWORKS Web Help.

To report problems encountered with the Web help interface and search, contact your local support representative. To provide feedback on individual help topics, use the “Feedback on this topic” link on the individual topic page.